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ABSTRACT
The sophistication of computer malware is becoming a se-
rious threat to the information technology infrastructure,
which is the backbone of modern e-commerce systems. We,
therefore, advocate the need for developing sophisticated, ef-
ficient, and accurate malware classification techniques that
can detect a malware on the first day of its launch – com-
monly known as “zero-day malware detection”. To this end,
we present a new technique, IMAD, that can not only iden-
tify zero-day malware without any apriori knowledge but
can also detect a malicious process while it is executing (in-
execution detection). The capability of in-execution mal-
ware detection empowers an operating system to immedi-
ately kill it before it can cause any significant damage. IMAD
is a realtime, dynamic, efficient, in-execution zero-day mal-
ware detection scheme, which analyzes the system call se-
quence of a process to classify it as malicious or benign. We
use Genetic Algorithm to optimize system parameters of our
scheme. The evolutionary algorithm is evaluated on real
world synthetic data extracted from a Linux system. The
results of our experiments show that IMAD achieves more
than 90% accuracy in classifying in-execution processes as
benign or malicious. Moreover, our scheme can classify ap-
proximately 50% of malicious processes within first 20% of
their system calls.

Categories and Subject Descriptors
D.4.6 [Software]: Security and Protection—Invasive soft-
ware; C.2.0 [Computer Systems Organization]: Com-
puter Communication Networks—Security and protection

General Terms
Algorithms, Experimentation, Security

Keywords
System Call, Malware, Classification
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1. INTRODUCTION
The ever increasing number and sophistication of mal-

ware attacks are posing a serious threat to the information
technology infrastructure, which is the backbone of mod-
ern e-commerce systems. The imposters or intruders are
now focusing their attention towards stealthy malware which
reaches vulnerable hosts and then stays undetected on the
hosts. “The longer a threat remains undiscovered in the
wild, the more opportunity it has to compromise computers
before measures can be taken to protect against it. Further-
more, its ability to steal information increases the longer
it remains undetected on a compromised computer” [1]. A
recent outbreak of well-known Conficker worm in Jan 2009
which affected more than 15 million computers all around
the world further validates the claim [3].

The true shortcoming of existing malware anti-virus prod-
ucts is their legacy of sticking to the signature-based technol-
ogy. This paradigm follows the following workflow: (1) mal-
ware causes intended damage, (2) forensic experts of anti-
virus companies get its samples to study its behavior, (3)
they assign it a signature which is effectively a sequence of its
instructions, (4) the signature is added to the database, (5)
customers are notified to update their signatures’ database,
(6) customers update their database and are finally pro-
tected against this malware. A careful reader can easily
conclude that the signature-based technology suffers from
two main shortcomings: (1) inability to detect an attack at
the day of its launch – known as “zero-day malware detec-
tion”, and (2) inability to cope with an exponential growth
in new malware [2].

Security experts are now focusing their attention on non-
signature based zero-day malware detection techniques and
it is becoming an active area of research. To this end, they
have proposed two types of techniques: (1) static, and (2)
dynamic. The static techniques take an executable file as an
input and apply different data mining techniques to classify
it as malicious or benign. In contrast, dynamic techniques
analyze the runtime behavior of a process and then raise
an alarm if the process is detected as malicious. The real
challenges in the design of dynamic malware detection tech-
niques are to achieve: (1) high detection accuracy, (2) low
false alarm rate, (3) low processing overhead, and (4) in-
execution detection before malware causes any significant
damage. To the best of our knowledge, no existing dy-
namic techniques meet the requirements (3) and (4); there-
fore, they are mostly considered“not suitable for deployment
on real-world computer systems”. Security experts believe
that if a dynamic technique that meets the aforementioned



requirements can be developed then it will be resilient to
code obfuscation, self-encryption and polymorphic transfor-
mations of a stealthy malware because a malware finally
has to do the desired malicious activity while it is executing.
However, these transformations can easily defeat well-known
static techniques.

The major contribution of this paper is our dynamic sche-
me – IMAD – that is not only efficient and accurate but
also has the ability to detect zero-day malware while they
are executing. The novel dimension of our scheme is that it
maintains an ‘impression’ of a running process by analyzing
its sequence of system calls. The ‘impression’ of a process is
a constantly varying measure of the malicious activity level
of the process; the moment it exceeds a threshold value, the
process is declared as malicious and is immediately killed to
limit its ability to cause significant damage. We have evalu-
ated our scheme on a real-world collection of Linux malware
from VX Heavens [12]. The results of our experiments show
that our scheme achieves more than 90% classification accu-
racy with 0% false alarm rate. It is lightweight on the pro-
cessor and can detect 50% of malicious processes within first
20% of their system calls. Therefore, we can safely conclude
that we are able to meet almost all of the outlined require-
ments of a next generation malware security solution. Our
system can be easily realized inside the kernel of Linux and
therefore becomes our last line of defence, once the malware
has successfully penetrated through all anti-malware shields,
and is now ready to execute.

The rest of the paper is organized as follows. We explain
the nature of our dataset in Section 2. The proposed IMAD
framework is presented in Section 3 followed by its evalua-
tion in Section 4. Strengths and limitations of the technique
are summarized in Section 5. We describe some of the im-
portant related work in this context in Section 6. Finally,
we conclude the paper with an outlook to our future work.

2. DATASET
We use our customized system calls logger module (will be

shortly introduced) to log system calls of benign and mali-
cious processes. We have collected 500 Linux Malware from
publicly available VX Heavens repository that includes dif-
ferent types of malware such as Backdoors, Flooders, Hack-
tools, Rootkits, Trojans, Viruses and Worms [12]. We man-
ually executed them on a virtual Linux machine so that it
can be easily restored to its original uninfected state after
each successful malware run. The logged data of system
calls is stored on an attached USB drive to ensure that the
data remains intact if we restore the virtual machine. This
process, however, cannot be automated because it requires
user intervention in running the application with the mal-
ware, unmounting the USB and then restoring the virtual
machine.

During the logging process, we encountered some unex-
pected problems in the collected Linux Malware. To our
surprise, some of them are not even ELF files – ELF or Ex-
ecutable Linkable File is a standard binary file format for
UNIX and UNIX-like systems – and most of the remaining
ELF files result in either a segmentation fault or a syntax
error. A few require some other applications, which are not
easily available, for their execution. Another interesting ob-
servation is that some of them even detect that they are be-
ing traced by giving the message “debugging detected”. In
this scenario, we lost confidence in their system calls as we

did not know if they perform malicious activity while know-
ing that they are being traced. Therefore, we have removed
such files from our dataset. After doing this interesting la-
borious study, we have finally identified 100 malware files
that executed successfully.

For benign processes, we have selected benign applications
that are available in /bin, /sbin and /usr/bin folder of
Linux. We used the above-mentioned process to log the
sequence of system calls of 180 benign processes as well.

3. ARCHITECTURE OF IMAD
In this section, we present the architecture of our IMAD

scheme. The important components of our scheme are: (1)
system calls logger, (2) n-grams generator, (3) n-grams an-
alyzer, (4) goodness evaluator, (5) ngc786 in-execution clas-
sifier, and (6) genetic optimizer. We now discuss each com-
ponent in detail.

3.1 System Calls Logger
The success of our scheme is directly dependent on the se-

quence of system calls of a process; therefore, it is extremely
important to collect real dataset of ‘system calls’ sequence of
processes running on a Linux computer. We have developed
a customized application – similar to existing Linux appli-
cation ‘strace’ – to log the trace of system calls of a process.
Our application uses ptrace system call that logs all system
calls of a process – by rehashing their name to a number
(0 − 324) – running on Intel Core 2 Duo 1.8 GHz architec-
ture with Linux 2.6.23.1 kernel. Our application starts the
test process as a child and then records its system calls.

3.2 n-grams Generator
Once we have collected raw sequence system calls of ma-

licious and benign files, we represent them in a sequence
of n-grams. n-gram is a fixed sized window of a sequence of
system calls where ‘n’ represents the size of the window. The
representation of a sequence of system calls by n-grams has
been widely used by a number of researchers for malware
detection [6][7][8]. For example, the sequence ‘1 2 3 4 5 6 7
8’ can be transformed into ‘1 2 3 4’, ‘2 3 4 5’, ‘3 4 5 6’, ‘4 5
6 7’ and ‘5 6 7 8’ 4-grams or ‘1 2 3 4 5 6’, ‘2 3 4 5 6 7’ and
‘3 4 5 6 7 8’ 6-grams.

The size of a window plays a crucial role in the repre-
sentation of any sequence. If the size of the window is too
small, n-grams fail to represent any useful information. We
use an example to elaborate this point: if the size of the
window is 2, then the sequence ‘1 2 3 2 1 2’ transforms to
unique n-grams: ‘1 2’, ‘2 3’, ‘3 2’ and ‘2 1’. Similarly, the
trace ‘3 2 3 2 1 2’ transforms to ‘3 2’, ‘2 3’, ‘2 1’ and ‘1 2’
n-grams which are the same as of the previous trace. As
a result, it is not possible to differentiate between the two
traces. But if the size of window is 4, the sequence ‘3 2 3 2’
is only present in the later sequence; consequently, we can
differentiate between the two traces. However, the greater
size of the window leads to larger number of unique n-grams
and thus increases the complexity of the corresponding al-
gorithm.

We have done some pilot studies to choose an appropriate
size of window for n-grams representation. The outcome of
our pilot studies is that 4 and 6 grams provide good classifi-
cation accuracy at a reasonable processing overhead. There-
fore, in rest of the paper, we only show results for 4 and 6
grams.



3.3 n-grams Analyzer
The n-grams generator creates two different datasets for

4 and 6 grams respectively. The role of n-grams analyzer is
to categorize unique n-grams as malicious, benign and neu-
tral. n-grams that are found only in the traces of malicious
processes are called ‘malicious n-grams’ in the rest of the
paper. Similarly, the n-grams that are present only in the
traces of benign processes are termed as ‘benign n-grams’.
The n-grams that are found in the traces of both malicious
and benign processes are categorized as ‘neutral n-grams’.

Our 4-grams dataset contains 7045 unique n-grams. The
distribution of these unique n-grams is: 1401 malicious n-
grams, 4692 benign n-grams and the remaining 952 are neu-
tral n-grams. In comparison, for 6-grams dataset, we have
10, 005 n-grams – approximately 50% more compared with
4-grams dataset. These unique n-grams contain 2356 ma-
licious n-grams, 6279 benign n-grams while the remaining
1370 are neutral n-grams.

3.4 Goodness Evaluator
This component assigns a ‘goodness value’ to each unique

n-gram. The goodness values are then used to calculate an
overall impression of a process. A higher impression value
of a process results in a higher probability of declaring a
process as benign. Use of 4-grams and 6-grams gives us
large number of unique n-grams. Therefore, it makes per-
fect sense to cluster n-grams on the basis of their category
determined by n-grams analyzer. The goodness evaluator
assigns highest goodness value of +1 to benign n-grams and
lowest goodness value of -1 to malicious n-grams. The eval-
uator uses a genetic optimizer to assign goodness values to
neutral n-grams. The method of assigning goodness values
is explained in detail in Section 3.6.

3.5 ngc786 Classifier
We now discuss our ngc786 (next generation classifier).

The motivation for developing our own classifier is that we
want to classify time series data with minimum number of
possible attributes (n-grams). To the best of our knowledge,
all existing classifiers take a fixed length feature vector. The
length is simply the number of unique n-grams in our case.
We need to run a given process from start to end to know
the presence or absence of different n-grams and then ac-
cordingly assign values to the feature vector table. This
classification paradigm does not allow us to do in-execution
classification with only partial information about the fea-
ture vector. In order to accomplish this requirement of in-
execution classification with variable length feature vector,
we have developed ngc786.

To this end, we provide a growing length sequence of n-
grams generated by n-grams generator. The classifier works

Algorithm 1 ngc786

procedure Classification algorithm for ngc786
while Process is unclassified and Process is in execution do

Wait for next system call
ng ⇐ goodness value of last n-gram in Sequence;
I ⇐ ng + α ∗ I {α is smoothing coefficient}
if I > Bu {Bu is upper bound} then
Hypothesis⇐ Benign;

else if I < Bl {Bl is lower bound} then
Hypothesis⇐Malicious;

end if
end while

with goodness values of all unique n-grams – determined
by the goodness evaluator – and uses these goodness values
to incrementally calculate an ‘impression coefficient’ for an
executing process. This impression coefficient is updated
for every new system call or an n-gram using the following
formula:

I ← G+ αI (1)

where I stands for the impression coefficient of the process,
G is the goodness value of the last n-gram and α represents
the smoothing factor. We now discuss the significance of two
parameters (goodness values of n-grams and the smoothing
factor) given as input to our ngc786 classifier.

Remember that we differentiate between malware and be-
nign processes considering their n-grams or more precisely
the goodness values of their n-grams. Thus, the goodness
values of n-grams eventually dictate the classification crite-
ria of our scheme. On the other hand, the value of smoothing
factor α determines the effect of goodness values of last n-
grams in calculating the overall impression of the process.
If it is kept too low, the impact of history is reduced and if
we keep it too high then the current values do not play a
significant role in calculating the impression coefficient.

3.5.1 Alarm Generator
The value of impression coefficient is checked at its each

update that happens after every system call. The moment
the impression coefficient of a process goes below its lower
bound Bl, it is declared malicious and an alarm is raised.
Similarly, if the impression coefficient increases above an
upper bound Bu, the process is declared as benign. The
pseudo-code of ngc786 and the alarm generator is given in
Algorithm 1.

If the impression coefficient lies in between the upper and
the lower bounds, our classifier leaves the process unclassi-
fied at this moment because it does not have enough infor-
mation. This approach simply delays the decision of clas-
sification with the hope that at next decision point, the
alarm generator might have sufficient information to raise
an alarm. In the worst case scenario, the complete process
might execute and we are unable to classify it. Since we
are developing an in-execution classifier, it has no way of
knowing a priori the length of feature vector. The complete
architecture of IMAD is described in Figure 1.

We now discuss the significance of the upper and lower
bounds. The upper and lower bounds of the impression
coefficient should be tuned for achieving higher classifica-
tion accuracy. The important constraint is that these values
should be within certain limit of zero. If smoothing factor
is 0.5, the impression coefficient can have a maximum value
of 2. Consequently an upper bound of greater than 2 would
be impossible to cross. Similarly if the bounds are set near
to zero, then premature classification – correct or wrong –
will result because it is very difficult to keep the impression
in between the two close bounds.

3.6 Genetic Optimizer
It is obvious that the classification accuracy of IMAD is

dependent on a number of parameters. These parameters
should be tuned/optimized for best performance. Our clas-
sifier needs to tune goodness of 952 and 1370 neutral n-grams
for 4-grams and 6-grams dataset respectively. Moreover, we
need to optimize three additional parameters: smoothing



Figure 1: IMAD Architecture

factor, upper bound and lower bound of the impression coef-
ficient. As a result, we have to optimize (952+3) or (1370+3)
variables for 4-grams and 6-grams dataset respectively. The
realtime dynamic optimizer, therefore, has to tune a large
number of parameters by taking into account their mutual
complex dependencies.

We use Genetic Algorithm (GA) for this purpose because
GAs are known to give good results in realtime dynamic
environments. In GA, our chromosome for 4-grams case has
955 genes, one for each corresponding variable. Similarly for
6-grams, our chromosome has 1373 genes. Each chromosome
actually represents one complete training instance of our
ngc786 classifier. We now assign the fitness value to each
instance by using the following formula:

F =
P

TP
+

N

TN
+
FP

P
+
FN

N
(2)

where,
TP = Number of true positives,
TN = Number of true negatives,
FP = Number of false positives,
FN = Number of false negatives,
P = Total number of positives,
N = Total number of negatives,
F = Fitness value

A chromosome with a small fitness value is more desirable
than a chromosome with a high fitness value. If a classifier

Algorithm 2 IMAD Algorithm

procedure Fitness Calculation for Training/Optimization of
IMAD (Training instances, goodness values of all n-grams,
α, Bu, Bl)
TP ⇐ 0
TN ⇐ 0
FP ⇐ 0
FN ⇐ 0
P ⇐ 0
N ⇐ 0
while More training instances available do

New Instance = Next Instance in Training Instances
Sequence = System Call Sequence of New Instance
if New Instance is Benign then
P ⇐ P + 1
Actual⇐ Benign

else
N ⇐ N + 1
Actual⇐Malicious

end if
Hypothesis⇐ Unknown;
while Hypothesis == Unknown and Process is in execution
do
ng ⇐ goodness value of last n-gram in Sequence;
I ⇐ ng + α ∗ I {α is smoothing coefficient}
if I > Bu {Bu is upper bound} then
Hypothesis⇐ Benign;

else if I < Bl {Bl is lower bound} then
Hypothesis⇐Malicious;

end if
end while
if Hypothesis == Malicious AND Actual == Malicious then
TP ⇐ TP + 1

else if Hypothesis == Benign AND Actual == Benign then
TN ⇐ TN + 1

else if Hypothesis == Malicious AND Actual == Benign then
FP ⇐ FP + 1

else
FN ⇐ FN + 1

end if
end while
Fitness⇐ P/TP +N/TN + FP/P + FN/N

randomly decides to classify all processes as benign or ma-
licious, then this would lead to 50% classification accuracy,
which of course is not acceptable. However, our fitness for-
mula heavily penalizes this situation because it leads to an
infinite fitness value – representing the worst possible chro-
mosome.

The fitness formula also caters for unclassified instances.
For example a malicious file declared as benign will not only
decrease TP but also increase FN , whereas the same ma-
licious file left unclassified will decrease TP only. Conse-
quently, an individual that leaves an instance unclassified
is fitter compared with the one that incorrectly classifies
it. Moreover the fitness tries to strike a balance in the per-
centage of correctly classified benign processes and correctly
classified malicious processes. For example, if we keep incor-
rectly classified instances constant, then an individual that
correctly classifies 90% malicious and 100% benign processes
is inferior in terms of fitness compared with the one that cor-
rectly classifies 95% of both types of processes.

In our training sessions, we have used a population of 1000
for 50 generations with mutation and crossover fractions of
0.2 and 0.8 respectively. This configuration of GA is final-
ized after doing empirical studies but their details have been
skipped for brevity.

The complete fitness function assignment criteria of our
scheme is described in Algorithm 2.



4. RESULTS AND DISCUSSION
We now provide results obtained from our experiments.

We first focus on the accuracy of our IMAD scheme com-
pared with other well-known classifiers. The purpose of
this analysis is to understand the accuracy behavior of our
scheme. However, we must emphasize that the comparison
is slightly unfair as no other classifier that has been com-
pared has the ability to do in-execution detection. Rather
all of them, except IMAD, create a fixed length feature vec-
tor once the malware has completely executed. Therefore,
detecting a malware once it has executed and caused the
damage has little value in terms of damage prevention. We
also provide an insight about how many in-execution mal-
ware is detected in how many system calls.

4.1 Detection Accuracy
To provide a systematic analysis, we use standard 10-fold

cross validation technique to determine classification accu-
racies of all algorithms. In this technique, the dataset is split
into 10 random parts. Nine parts are used for training and
remaining 1 part is used for testing. This process is repeated
10 times to ensure that each part is tested at least once.

Remember that if IMAD does not have enough informa-
tion then it leaves the process unclassified in the hope that
it might be able to classify it in future. Tables 1 and 2 show
this behavior of IMAD. In case of 4-grams, IMAD leaves 36
processes as unclassified which is approximately 12% of to-
tal number of files. This number increases to 18.21% in case
of 6-grams. One can conclude from both tables that the
true benefit of going from 4-grams to 6-grams is that the
number of misclassifications decreases. The number of mis-
classified benign files goes from 7 to 0 and similarly for the
misclassified malicious files it decreases from 3 to 1. We also
see an increase in the number of correctly classified malware
processes from 75 to 77. The downside of leaving processes
unclassified is that they accumulate to 12 − 18% of total
processes at the end of execution.

Table 1: Performance of IMAD on 4-grams dataset
Classified Classified Left Total

as as as
Benign Malicious Unclassified

Benign 159 7 14 180
Malicious 3 75 22 100

Total 162 82 36 280

Table 2: Performance of IMAD on 6-grams dataset
Classified Classified Left Total

as as as
Benign Malicious Unclassified

Benign 151 0 29 180
Malicious 1 77 22 100

Total 152 77 51 280

4.2 Comparison
We now compare accuracy of our IMAD scheme with four

well-known classification techniques namely Support Vector
Mahcine (SVM), RIPPER, C4.5 and Näıve Bayes. Remem-
ber that the comparison is made to analyze detection ac-
curacy of IMAD with benchmark classifiers; otherwise, as
mentioned before, none of them has in-execution malware
detection capability.

Support Vector Machines. The concept of Support
Vector Machine (SVM), invented by Vapnik, in its simplest
form aims to develop a hyperplane that separates a set of
positive samples from a set of negative samples with a max-
imum margin [16]. For linear separability of the problem
space, SVMs use a kernel function for mapping training data
to a higher-dimensional space. We are using SMO (Sequen-
tial Minimal Optimization) which is a fast and efficient SVM
training algorithm implemented in WEKA [16].

C4.5. Decision trees are usually used to map observations
about an item to draw conclusions about the item’s target
value using some predictive model [13]. They are very easy
to understand and are efficient in terms of time especially
on large datasets. They can be applied on both numerical
and categorical data, and statistical validation of the results
is also possible. We use C4.5 decision tree (J48) that is
implemented in WEKA. We use the default parameters for
J48.

RIPPER. We also use a propositional rule learner, Re-
peated Incremental Pruning to Produce Error Reduction
(RIPPER), proposed by Cohen as an optimization of IREP
[15]. RIPPER, performs quite efficiently on large noisy data-
sets with hundreds of thousands of examples. The algorithm
works by initially making a detection model composed of
rules which are improved iteratively using different heuris-
tic techniques. The constructed rule set is used to classify
the test cases. We use default parameters for RIPPER in
WEKA.

Näıve Bayes. Näıve Bayes is a simple probabilistic clas-
sifier that assumes independence among the features i.e. the
presence or absence of a feature does not affect any other
feature [14]. The algorithm works effectively and efficiently
when trained in a supervised learning environment. Due to
its inherent simple structure it often gives very good perfor-
mance in complex real world scenarios. The maximum like-
lihood technique is used for parameter estimation of Näıve
Bayes models.

Table 3: Performance of classifiers on 4-grams
dataset

False
Classifier TP TN FP FN Detection Alarm

Accuracy Rate

IMAD 75 173 7 25 75.00% 3.89%
SVM 64 167 13 36 64.00% 7.22%
C4.5 85 150 30 15 85.00% 16.67%

RIPPER 79 153 27 21 79.00% 15.00%
Näıve Bayes 64 162 18 36 64.00% 10.00%

Table 4: Performance of classifiers on 6-grams
dataset

False
Classifier TP TN FP FN Detection Alarm

Accuracy Rate

IMAD 77 180 0 23 77.00% 0.00%
SVM 62 163 17 38 62.00% 9.44%
C4.5 70 153 27 30 70.00% 15.00%

RIPPER 77 149 31 23 77.00% 17.22%
Näıve Bayes 58 154 26 42 58.00% 14.44%

We now tabulate the results of our comparative study
obtained from 4-grams and 6-grams in Table 3 and Table
4 respectively. For comparison, we have grouped IMAD’s
unclassified processes with processes declared as benign be-



cause the end result of both is the same – alarm is not raised.
It is clear from both the tables that IMAD benefits from us-
ing 6-grams because its detection accuracy goes from 75%
to 77% and the false alarm rate goes down to zero from 4%.
The true benefit of using IMAD is its relatively comparable
accuracy but with almost 0% alarm rate.

We believe that IMAD is able to significantly outperform
SMO because SMO classifies an instance by looking at the
complete feature vector. This global view of the feature vec-
tor significantly degrades the accuracy because it directly
depends on the dominated values. For example, if trace of
a malicious process contains 100 neutral n-grams and 2 ma-
licious n-grams, then SMO’s result are dominated by 100
neutral n-grams rather than 2 malicious n-grams; conse-
quently, it can lead to a misclassification. In comparison,
IMAD because of its goodness evaluation component has a
better probability of classifying this malicious process.

We have analyzed the number of rules in case of JRIP
and the number of leaves in case of J48. Our observation
is that JRIP has limited number of attributes in the rules
and similarly J48 has small number of nodes in its decision
trees. Consequently, both JRIP and J48 use only a limited
number of n-grams instead of using all benign and malicious
n-grams which limits their accuracy.

4.3 Analysis of In-Execution Detection Time
Now we focus our attention to the in-execution malware

analysis and detection feature of IMAD. Specifically, we are
interested in analyzing the number of n-grams needed by
IMAD to detect malware. We normalize this number with
respect to the total number of n-grams of that process. The
outcome of this study will provide an insight about how
much percent of malware on average has executed before it
is detected. It might be of direct interest to know that how
many malware are detected within 20% of their execution
trace from the beginning. Similarly if a malware is detected
after it has executed 95% of its trace, it will indicate only
partial success of IMAD.

We present the results of our technique in Figure 2 and
Figure 3 for 4-grams and 6-grams datasets respectively. In
these figures, detected malware are grouped together on the
basis of the percentage of n-grams required before detection;
smaller percentage is desirable because it implies earlier de-
tection. The area covered by pie depicts the fraction of mal-
ware identified in a particular range. We see that in case
of 6-grams dataset, IMAD is able to detect almost 50% of
malware within first 20% of their n-grams.

We, however, emphasize that a late detection towards the
end of its execution may not necessarily mean that malware
has caused its intended damage to the computer system.
It is our observation that most of stealthy malware tries
to hide itself in the beginning with an aim to cause the
real damage towards the end. In this scenario, even late
detection is of significant value compared with no detection.
On the other side, it is also possible that malware performs
malicious activities at the beginning of its execution and
afterwards gets detected in the middle of its execution. In
such a case, IMAD may not completely achieve its desired
objective.

We now show a detailed histogram that shows the fraction
of n-grams needed by IMAD before detection in Figure 4 and
Figure 5 for 4-grams and 6-grams datasets respectively.

We can conclude that 4-grams histogram and 6-grams his-

Figure 2: 4-grams dataset: Pie-Chart showing iden-
tified malware according to percentage of execution
before identification

Figure 3: 6-grams dataset: Pie-Chart showing iden-
tified malware according to percentage of execution
before identification

togram are significantly similar to one another. Both of
them first have a large chunk in the beginning and then in
the middle. This similarity provides a useful insight about
the behavior of ngc786 classifier in IMAD: it can identify
any type of malware after analyzing the same percentage
of n-grams irrespective of the size of window – 4-grams or
6-grams.

We argue that this behavior of detecting a particular type
of malware after a fixed length of trace irrespective of 4- or
6-grams indicates that the malware must have either done
or at least tried to do malicious activity at this particular
point in time. This strengthens our belief that our scheme
is able to successfully detect a malware (in most the cases)
before they can do any significant damage.

5. STRENGTHS AND LIMITATIONS
We now summarize the main strengths and limitations

of IMAD in this section to provide a useful insight of our
scheme. Our technique has following merits:

• The main strength of our IMAD is its in-execution
malware detection capability.



Figure 4: The histogram shows percent of 4-grams
needed before detection of malware

Figure 5: The histogram shows percent of 6-grams
needed before detection of malware

• IMAD–even with in-execution detection–provides com-
parable accuracy to the existing benchmark classifiers.
However, it provides significantly better false alarm
rate.

• IMAD, even with 6-grams, requires approximately 1
KB of memory. Recall that we need to maintain a ta-
ble in which we associate each n-gram with a goodness
value. In case of 6-grams, one n-gram approximately
requires 6 bytes of memory and its goodness being a
real number requires 4 bytes. Recall that for 6-grams
we have 10, 005 unique n-grams. Since each n-gram
takes 10 bytes; therefore, total size is just 100, 050
bytes which is reasonably acceptable. For 4-grams the
size of memory is just 7045 * 8 = 56, 360 bytes.

• We also need to evaluate the processing overhead be-
cause IMAD achieves best performance with 6-grams.
Our approach requires a processor to do a number
of operations during the testing phase – one floating-
point multiplication, one floating-point addition and
one floating-point comparison only. On a Core 2 45nm
processor, floating-point multiplication, addition and
comparison takes just 5, 3 and 3 CPU cycles respec-
tively. With a few other move instructions the calcula-
tion of goodness should take less than 20 CPU cycles.
If we add n-gram generation and analysis cycles of few
hundred microseconds, it is still reasonably acceptable.

The important limitations of IMAD are as follows:

• Our analysis is based on just 100 malware samples,
which is relatively a small number to do any general-
ization of IMAD.

• The parameters such as arguments of the system calls
are ignored in the experiments. If they are also consid-
ered, we can further enhance the accuracy of IMAD.
This is an important dimension of our future work.

• A few simpler parameters such as the frequency of a
particular system call of a specific process or the fre-
quency of a combination of system calls of a process
might have been also helpful in further improving the
accuracy of the our scheme.

6. RELATED WORK
Forrest et al. proposed an intrusion detection system us-

ing system call sequences [6]. The system focuses on analyz-
ing the processes that execute with higher privileges. They
used one such process ‘sendmail’ for testing and creating
a database, which consists of normal system call sequences
for sendmail. Later they attacked the computer with mal-
ware and compared the sequences generated by sendmail
with the database. They found that sequences generated
under attack are considerably different from the ones that
are generated without an attack. This technique has the
limited ability to classify a limited number of known pro-
cesses in-execution. For example, if the system is trained
for sendmail, then it can not be used for any other process
. On the other hand, we train our system on one set of pro-
cesses and test it on another set that does not contain any
process from the training set. Helmer et al. extended the
work on sendmail data using a feature vector approach and
used Genetic Algorithm for feature selection [10].

Lee. et al. trained JRIP classifier with dataset contain-
ing normal sequences and the ones generated under attack
[7]. However, their work is also based on analyzing limited
number of known processes.

The authors in [8] used feature vector approach for dif-
ferentiating worms from benign processes. They developed
a feature vector that shows the short sequences of system
calls present or absent in a process’s trace. The classifiers
used are SVM and Näıve Bayes. The main objective of their
research focused on classifying unknown processes; however,
they cannot block a malicious process in-execution because
their analysis starts once the process has finished.

The author in [9] also collected system call sequences for
various processes and divided them into different groups of
system calls that belong to benign processes, malicious pro-
cesses or code injected processes. However, he did not do
any empirical evaluation to study the efficacy of immune
systems for malware detection.

7. CONCLUSIONS
In this paper, we have proposed a novel in-execution re-

altime efficient malware detection scheme – IMAD. We ar-
gue that existing classifiers do not have the ability to oper-
ate on variable length feature vector; therefore, they cannot
be adapted for in-execution requirement. Consequently, we
have developed our own ngc786 classifier which can classify
on the basis of variable length feature vector. This is an im-
portant contribution of the work because the classifier can
also be useful in many critical realtime control systems.



We have also compared our technique with SMO, J48,
JRIP and Näıve Bayes classifier. Our results show that
IMAD has achieved better or comparable accuracies com-
pared with most of them albeit with significantly smaller
false alarm rate. We have also analyzed the fraction of n-
grams required by IMAD to classify an executing malware.
Our results show that approximately 50% of malicious pro-
cesses are classified within first 20% of their execution. This
shows that IMAD has the potential to be integrated into
existing anti-virus products.

In future, we plan to increase the number of benign and
malicious traces that would give us a better understanding
of IMAD. Moreover, we plan to identify system calls that
are more important in deciding the behavior of a process. In
this way, we can significantly reduce the number of unique n-
grams required for classification. To conclude, in-execution
malware detection provides exciting avenues to bio-inspired
community for doing novel research that can offer solutions
to real world security threats.
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